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Orientations of low-energy domain walls in perovskites with oxygen octahedral tilts
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Many applications of ferroic materials, such as data storage and spintronics, are achieved through the control
and manipulation of their domain wall (DW) orientations and configurations. Here we propose a rotational
compatibility condition to identify low-energy DWs in perovskites with oxygen octahedral tilt instability. It is
derived from the strong DW energy anisotropy arising from the rigidity and corner-sharing feature of the octahedral
network. We analyze quantitatively the DWs in SrTiO3 and explain successfully the unusual ferroelectric DW
width and energy in BiFeO3.
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Perovskites (ABO3) are one of the most studied families of
functional materials that may exhibit a variety of interesting
properties, including ferroelectric (FE), magnetic, catalytic,
ion conducting, and superconducting with applications to
energy storage and conversion devices [1,2]. The functional
versatility of perovskites is partially due to their adaptable
structure which can accommodate more than half of the
elements from the periodic table in A or B sites [1]. A typical
characteristic of the perovskite structure is the corner-sharing
network of the rigid BO6 oxygen octahedra which can rotate
or tilt as a whole with almost no distortion of the O-B bonds
[2]. More importantly, it is found that the oxygen octahedral
tilts (OTs) are strongly coupled to the microscopic electronic,
magnetic, and optical properties [3–5]. Domain walls (DWs)
as the symmetry breaking elements of OTs are thus expected to
give rise to new physical properties through coupling between
OTs and other order parameters, which in turn may alter the
overall macroscopic responses of a material. It is suggested
that these functional DWs may potentially be used as new
elements for nanoelectronics [6].

The orientations of permissible (low-energy) DWs are
conventionally determined using two conditions: One is the
mechanical compatibility condition which requires matching
of the atomic displacements of the two adjacent domains
to minimize the strain energy [7]; the other is the electrical
neutrality condition to minimize the electrostatic energy, e.g.,
in FE DWs arising from the bound charges. These two
conditions are, however, insufficient to predict the orientations
of the low-energy OT DWs. To overcome this difficulty, here
we propose a third condition, “the rotational compatibility
condition.”

We first derive the rotational compatibility condition from
the specific corner-connecting configuration of the oxygen
octahedra in perovskites, inferring a universal and strong
anisotropy in the OT DW energy. We apply the condition to
ferroelastic SrTiO3 (STO), and the anisotropic DW energies
are calculated based on the Ginzburg-Landau-Devonshire
(GLD) theory. We then investigate the interaction between
the OTs and the FE polarization in multiferroic BiFeO3 (BFO)
and show that the anisotropy of the OT DW energies may
drastically alter the relative stability of different types of FE
DWs.

Let us start from the oxygen octahedral network of the
perovskite structure and choose the Cartesian coordinate sys-
tem along the crystallographic directions of the pseudocubic

lattice. Due to the corner-sharing feature and rigidity of
the oxygen octahedra, the rotation of one octahedron along
the x3 direction requires the rest of the octahedra within the
same layer (x1-x2 plane) to rotate accordingly, as shown in
Figs. 1(a) and 1(b). Thus, all the corner-connected octahedra
rotate in opposite directions in an alternate pattern, leading to
a unit-cell doubling. On the other hand, the oxygen octahedra
in the adjacent layers are free to rotate in either the same or
opposite pattern, which gives rise to the so-called in-phase
tilt [Fig. 1(b)] or out-of-phase tilt [Fig. 1(a)], respectively. In
an out-of-phase tilt, the unit cell is doubled along all three
pseudocubic axes [8]. Since all the OTs can be decomposed
into tilt components along the three pseudocubic axes due to
the rigidity of the oxygen octahedra, a general OT pattern
can thus be expressed using the Glazer notation [8]. In
the following we will discuss the rotational compatibility
condition using STO as an example.

The crystal structure of the tetragonal STO, Glazer notation
a0a0c−, has only one out-of-phase OT component along the
x3 direction. The antiphase DWs in STO would normally be
considered to be isotropic since both the mechanical compati-
bility and electrical neutrality conditions are not applicable. To
demonstrate the effect of the rotational compatibility condition
on DWs, we focus our discussion on two distinct types of
antiphase DWs. The type-I DWs, as shown in Fig. 1(e), are
perpendicular to x3. Both neighboring domains produce a zero
displacement of the shared oxygen atoms, resulting in almost
no disruption in the oxygen positions. Therefore, they are
very thin, and the two oxygen octahedral layers across the
DWs show the in-phase tilt pattern. These types of DWs are
also called “easy walls” with a small DW width and energy
[9]. These DWs are analogous to the translational DWs [10],
related to the unit-cell doubling induced by the OTs. The
type-II DWs are sketched in Fig. 1(g). They are parallel to
x3, and the neighboring domains tend to displace the shared
oxygen atoms at the DWs in opposite directions. To connect the
two domains, the OTs near the DWs have to rotate relative to
the two domains, i.e., the oxygen octahedra tilt around the x1 or
x2 axis near the DW. As a result, the DWs have a much wider
thickness with a significantly higher energy as compared to
the type-I DWs. With the assumption that the rotations of OTs
near a DW cost energy, we propose the rotational compatibility
condition to determine the orientations of the low-energy OT
DWs in perovskites (for proof, see the Supplemental Material
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FIG. 1. (Color online) Green and blue diamonds represent oxy-
gen octahedra rotated clockwise and counterclockwise, respectively,
with the rotation axis along x3. The balls inside the diamonds
represent B atoms. Red and orange balls refer to oxygen and
A atoms, respectively. (a) and (b) show the OT patterns in
a0a0c− and a0a0c+ phases. (c) and (d) demonstrate type-I walls
in a0a0c− and a0a0c+ phases. The dotted-dashed lines indicate
the locations of DWs. Schematic plot of oxygen atom displace-
ments in (e) type-I wall in a0a0c−, (f) type-I wall in a0a0c+,
(g) type-II wall in a0a0c−, and (h) type-I wall in a0b−b−. Circles
indicate oxygen atoms. Every shared oxygen atom at the DWs is
artificially split into two virtual atoms (dotted circles) in (e)–(h), in
order to more clearly show the displacements of the oxygen atoms
in each domain. A cross or a dot in a circle represents an atom
displacement of into or out of the plane of the page, respectively.

[11]),

(θi − θ ′
i )nj = 0 (j �= i), with θi = −θ ′

i �= 0, (1)

where θi and θ ′
i are axial vectors and denote the OT components

in the two neighboring domains, and n is the DW normal.
If the OTs only change the sign of ith component, i.e., θj =

θ ′
j (j �= i), θj = −θ ′

j �= 0 (j = i), from Eq. (1), we obtain
nj = 0 (j �= i) and the value of ni is arbitrary, i.e., the wall
normal is along the xi axis. The DW is rotationally compatible
with respect to all the changed components, and we call

it a fully rotation-compatible DW, usually accompanied by
the lowest DW energy in a system. Also, an antiphase DW
with the sign changes of two or three OT components, i.e.,
θi = −θ ′

i �= 0, θj = −θ ′
j �= 0, with j �= i, with the wall normal

along the xi axis, is rotationally compatible with respect to the
θi component, but rotationally incompatible to other flipped
components. We call it a partially rotation-compatible DW,
with a higher energy than a fully rotation-compatible DW. The
rotational compatibility condition does not apply to an OT
component that changes to zero, i.e., θi �= 0, θ ′

i = 0.
Beanland developed a mathematical framework to describe

the effect of the corner-connectivity and symmetry operations,
and proposed a method to predict all the symmetry-allowed
DW structures [12]. Here Eq. (1) determines that among
those allowed by symmetry, the DWs maintaining corner-
connectivity with reduced rotations of OTs near the DWs have
lower energy. More detailed discussions about how Eq. (1)
is related to Beanland’s description as well as the mechanical
compatibility condition are given in the Supplemental Material
[11].

By applying the rotational compatibility condition, we can
readily predict the orientations of the low-energy OT DWs.
Examples of several popular perovskite structures with fully
rotation-compatible DWs are listed in Table I. Relative to the
Glazer notation for the two domains, there is a sign change
for only one superscript for the local structure of a DW, either
from + to −, or vice versa. In other words, one OT component
changes from in-phase to out-of-phase at the DW, or vice versa.
For example, at the low-energy DW of an a0b−b− structure,
shown in Fig. 1(h), the OTs of the two adjacent domains
produce the same displacements for the shared oxygen atoms
at the DW, and the local DW structure is a0b−c+.

The anisotropy of the OT DWs in STO can be quantitatively
analyzed within the GLD framework. For simplicity, the
stress-free boundary condition is assumed, and the elastic
energy contribution is neglected. The total free energy of the
OT domains can then be written as the function of the OT order
parameters,

FOT =
∫ (

βij θiθj + βijklθiθj θkθl + 1

2
κijklθi,j θk,l

)
dV, (2)

where V is the system volume, βij and βijkl are Landau
coefficients, κijkl are gradient energy coefficients, and a comma
in the subscript stands for spatial differentiation. Assuming

TABLE I. Fully rotation-compatible DWs in some popular perovskites. In the notation, [θiθj θk](ninjnk)[θ ′
iθ

′
j θ

′
k], [θiθj θk], and [θ ′

iθ
′
kθ

′
l]

are the OT order parameters describing the OT patterns in the two neighboring domains across a DW, and (ninjnk) is the DW normal. An
asterisk indicates an in-phase tilt (otherwise, out-of-phase tilt).

Space group of bulk phase (Glazer notation) Low-energy DW (local Glazer notation) Examples [8,31]

P 4/mbm(a0a0c+) [001∗](001)[001̄∗](a0a0c−) NaNbO3

I4/mcm(a0a0c−) [001](001)[001̄](a0a0c+) SrTiO3

I4/mmm(a0b+b+) [01∗1∗](010)[01̄∗1∗](a0b−c+)

Imma(a0b−b−) [011](010)[01̄1](a0b+c−) La0.7Ba0.3MnO3

Im3̄(a+a+a+) [1∗1∗1∗](100)[1̄∗1∗1∗](a−b+b+) Ca0.25Cu0.75MnO3

R3c(a−a−a−) [111](100)[1̄11](a+b−b−) BiFeO3,PbZrO3

Pnma(a−a−c+) [111∗](001)[111̄∗](a−a−c−) CaTiO3,GdFeO3

[111∗](100)[1̄11∗](a+b−c+)
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FIG. 2. (Color online) (a) Magnitude of κeff along the direction (ω,η) with x3 as the polar axis. The OT rotates around the x3 axis.
(b) Magnitude of κeff in the x1x3 plane. Also shown are the magnitudes of κ ′

11 and κ ′
44, the gradient coefficients in the rotated coordinate system.

that the only active OT is along x3, type-I DWs (wall normal
along x3) should have a much smaller DW energy than that
of type-II DWs (wall normal along x2), implying κ3333 =
κ11 � κ3232 = κ44. From experimental phonon dispersion data
[9,13,14], κ11 = 0.28×1010 J/m3 and κ44 = 7.11×1010 J/m3,
which agrees quite well with our prediction.

To predict the DW energy anisotropy with an arbitrary
orientation for the antiphase DWs in STO, we calculate the
energies and widths of the DW with the normal (1,ω,η) in
a spherical coordinate system, where η is the polar angle
between the normal and x3. Assuming that no OT components
along the x1 and x2 axes develop at the DW, we obtain the DW

width δ = 2
√

− κeff
β1

, and DW energy γ = 2
3β11

√
−β3

1κeff , where

the effective gradient energy coefficient κeff = κ ′
2323sin2η +

κ ′
3333cos2η in which κ ′

ijkl is the gradient energy coefficient
tensor in a rotated coordinate system (see the Supplemental
Material [11]). The DW energy anisotropy depends only on
κeff , whose magnitude along the direction (ω,η) is plotted as a
function of the radial distance in Fig. 2(a). The nearly isotropic
DW energy in the x1x2 plane is due to the relation κ12 ∼ −κ44

[9]. The maximum value corresponds to the DWs that have
their normal lying within the x1x2 plane. They correspond to
the high-energy DWs, and a particular example is the type-II
DWs discussed previously. In order to better visualize the
κeff surface, a cross section along the x1x3 plane is plotted in
Fig. 2(b). The minimum of κeff is realized when the wall normal
is along the x3 axis, as expected. The calculated anisotropy in
κeff corresponds to the DW energy anisotropy, consistent with
the predictions from the rotational compatibility condition.
Therefore, the rotational compatibility condition originating
from the atomistic characteristics of the OTs can be well
modeled by the continuum GLD theory by considering the
strong anisotropy of the gradient energy coefficients.

The OTs are usually not the sole order parameters that
exist in perovskites, and they typically interact with other
order parameters such as polarization, strain, and so on. To
understand the influence of the OTs on the FE DW energy
anisotropy, we consider BFO as an example.

To describe the OT and polarization DWs in BFO, we adopt
the notation [PiPjPk,θiθj θk](ninjnk)[P ′

iP
′
jP

′
k,θ

′
iθ

′
j θ

′
k],

where [PiPjPk,θiθj θk] and [P ′
iP

′
jP

′
k,θ

′
iθ

′
j θ

′
k] are the

polarization and OT components in two adjacent domains.
In a given rhombohedral BFO domain, the polarization and
out-of-phase OTs are along one of the eight body diagonal
〈111〉 pseudocubic directions [15]. For a particular polarization
direction, there are two possible OTs, either parallel or
antiparallel to the polarization. The two cases are illustrated
with one-dimensional (1D) schematic drawings of a FE + OT
DW and a pure FE DW in Figs. 3(a) and 3(b), respectively.
Therefore, the total number of domain variants is 16 rather
than 8. With u and v labeling the numbers of how many
components the polarization and OTs change sign across a DW,
their relationship can be either u + v = 3 for an OT phase shift
across the DW, or u = v for no phase shift [16]. Therefore, the
possible pairs for values {u,v} are {0,3}, {1,1}, {1,2}, {2,1},
{2,2}, {3,0}, and {3,3}. {0,3} corresponds to the antiphase
OT DWs, and here we only analyze the DWs with low

FIG. 3. (Color online) (a), (b) 1D schematic plot of an (a)
FE + OT DW (left: P3 = 1, θ3 = 1; right: P3 = −1, θ3 = −1), and
(b) pure FE DW (left: P3 = 1, θ3 = 1; right: P3 = −1, θ3 = 1). OTs
are represented by diamonds of different colors; a cross and a dot
in a circle indicate polarization pointing into and out of the plane of
the page, respectively. Plotted in (c)–(e) are order parameter profiles
of (c) [1̄11,1̄11](100)[1̄1̄1̄,111] (109°), (d) [111,111](11̄0)[1̄1̄1̄,111]
(180°), and (e) [1̄1̄1,1̄1̄1](11̄0)[1̄1̄1̄,1̄1̄1̄] (71°) DWs.
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TABLE II. DW energies (mJ/m2) of the nine types of DWs in
BFO. The angles after the DW notation measure the changes of the
polarization vectors in the neighboring domains across a DW.

DW type Dieguez et al. [16] Present work

[111,111](100)[111,1̄1̄1̄] (OT) 227 231

[111,111](110)[111,1̄1̄1̄] (OT) 254 293

[11̄1,11̄1](110)[11̄1,1̄11̄] (OT) 293 290

[1̄1̄1,1̄1̄1](11̄0)[1̄1̄1̄,1̄1̄1̄] (71◦) 152 124

[1̄1̄1,1̄1̄1](11̄0)[1̄1̄1̄,111] (71◦) 178 161

[1̄11,1̄11](100)[1̄1̄1̄,111] (109◦) 62 55

[1̄11,1̄11](100)[1̄1̄1̄,1̄1̄1̄] (109◦) 319 259

[111,111](11̄0)[1̄1̄1̄,111] (180◦) 74 94

[111,111](11̄0)[1̄1̄1̄,1̄1̄1̄] (180◦) 255 381

Miller indices. For example, in [111,111](ninjnk)[111,1̄1̄1̄],
(ninjnk) is (100), (110), or (11̄0). (100) is partially rotation-
compatible and should have the lowest DW energy among the
three. To satisfy the mechanical compatibility and electrical
neutrality conditions, the DW orientations of {1,1}, {1,2},
{2,1}, and {2,2} can be uniquely determined, and {3,0}
and {3,3} DWs each have one low Miller index DW [17].
Therefore, based on the two conventional conditions, we have
a total of nine possible types of DWs, as listed in Table II. Only
the [1̄11,1̄11](100)[1̄1̄1̄,111] DW is fully rotation-compatible,
and thus its DW energy should be the lowest among the nine.

To further investigate the consequence of order parameter
coupling between the OTs and polarization on the DW energy
anisotropy and the order parameter profiles across the DWs in
BFO, we employ the GLD theory and phase-field method. We
consider all the important energy contributions: bulk chemical
energy, gradient energy, elastic energy, and electrostatic energy
[18,19], i.e.,

F =
∫

V

[
αijPiPj + αijklPiPjPkPl + βij θiθj + βijklθiθj θkθl

+ tijklPiPj θkθl + 1

2
gijklPi,jPk,l + 1

2
κijklθi,j θk,l

+ 1

2
cijkl

(
εij − ε0

ij

)(
εkl − ε0

kl

) − 1

2
EiPi

]
dV, (3)

where αij , αijkl are the Landau coefficients of polarization,
tijkl are coupling coefficients between the polarization and
OTs, gijkl are gradient energy coefficients of polarization, cijkl

is the elastic stiffness tensor, εij and ε0
kl are the total strain and

eigenstrain, respectively, and electric field Ei = −ϕ,i with ϕ

the electrostatic potential. The eigenstrain is related to the po-
larization and OTs through ε0

ij = λijklθkθl + hijklPkPl , where
λijkl and hijkl are coupling coefficients. All the coefficients
can be found in the Supplemental Material [11]. It should be
noted that the relation κ11 � κ44 is satisfied in describing the
energy anisotropy of the OT DWs.

The order parameter profiles across the DWs between
different pairs of domains and the corresponding DW energies
are obtained by numerically solving the phase-field equations
[20]. Periodic boundary conditions are imposed along all three
dimensions. The system size is 4096x×1x×1x and

the grid spacing is x = 0.031 nm. The coordinate system
is rotated if necessary to guarantee that the wall normal is
always along the x1 direction. Due to the periodic boundary
conditions, two DWs exist in the system, and the system size is
chosen to be sufficiently large to avoid the interactions between
the two walls.

The DW energies of the nine possible types of walls
obtained from the phase-field simulations are given in Table II,
and the first-principles calculation results are included for
comparison [16]. The agreement from our phenomenological
predictions and the first-principles is quite reasonable, consid-
ering the fact that there are numerical and systematic errors in
both methods.

As predicted by the rotational compatibility condition, the
[1̄11,1̄11](100)[1̄1̄1̄,111] (109°) DW has the lowest energy
in Table II and the [111,111](100)[111,1̄1̄1̄] (OT) DW has
a lower energy than the other two pure OT DWs. It is
interesting to note that the two DWs were also predicted
by Beanland [12]. The DWs with the second and third
lowest energies are [111,111](11̄0)[1̄1̄1̄,111] (180°) and
[1̄1̄1,1̄1̄1](11̄0)[1̄1̄1̄,1̄1̄1̄] (71°), respectively. The three DWs
with the lowest energies were extensively studied using
first-principles calculations [16,21–23] (the calculated DW
energies from different groups are listed in Table SII in the
Supplemental Material [11]).

To understand the origins of the relative magnitudes of
the three lowest energies, we plot the order parameter profiles
across the three DWs obtained from the phase-field simulations
in Figs. 3(c)–3(e). They are qualitatively consistent with the
first-principles calculations and experimental measurements
[22]. It should be noted that the first-principles calculations
were performed at 0 K, and the DW width is smaller than our
values obtained at room temperature. As shown in Fig. 3(c), the
[1̄11,1̄11](100)[1̄1̄1̄,111] (109°) DW satisfies the rotational
compatibility condition (also listed in Table I). The OT pattern
at the DW is a−a−c+, similar to that in Pnma, the space group
of the high temperature BFO [14]. This DW structure was
also observed in Ref. [16], and is believed to be related to the
high conductivity at the DW [6]. The [1̄1̄1,1̄1̄1](11̄0)[1̄1̄1̄,1̄1̄1̄]
(71°) DW [Fig. 3(e)], however, does not satisfy the rotational
compatibility condition since the wall normal is not along any
pseudocubic axes. Therefore, the energy and width of the 71°
DW are much larger than those of the 109° DW. Furthermore,
as shown in Fig. 3(d), [111,111](11̄1)[1̄1̄1̄,111] (180°) is a
pure FE DW without notable variations of the OT order param-
eters. Due to the relative contribution of variations of the polar-
ization and OTs in the total free energy, the width and energy
of the 180° DW are between those of the 71° and 109° DWs.

The analysis of the DW energies and order parameter
profiles in BFO demonstrates the substantial contribution of
the OTs to the DW energy anisotropy and DW thickness.
Apparently, if the DW energies were dominated by the
polarization gradient energy, the sequence of relative DW
energies should be 71°< 109°< 180°, as in the rhombohedral
BaTiO3 [24,25]. Comparing the energies of the nine DWs
in Table II, we found that if the OTs are parallel to the
polarization, the sequence 71°<109°< 180° is valid. How-
ever, as shown in Fig. 3(b), due to the unit-cell doubling, it
is possible that the OTs are antiparallel to the polarization,
which gives smaller DW energies in [1̄11,1̄11](100)[1̄1̄1̄,111]
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(109°) and [111,111](11̄0)[1̄1̄1̄,111] (180°). The DW energy
sequence in BFO is thus changed to 109°< 180°< 71°. Earlier
experiments in BFO thin films also support this unusual
sequence, which showed that both the 109° and 180° DWs
have lower DW energies than the 71°DWs [26–29]. Therefore,
it is not sufficient to consider the polarization gradient alone
to obtain the DW energy and its anisotropy in BFO.

To conclude, the specific corner-connecting feature of the
oxygen octahedral network is shown to be responsible for
the strong anisotropy of the domain wall (DW) energy in
perovskites with oxygen octahedral tilt (OT) instability. It
is demonstrated that there exist universal low-energy DWs,
the orientations of which can be determined by the proposed
rotational compatibility condition. This anisotropy can be
described by the relation κ11 � κ44 in the gradient energy
coefficient tensor within the framework of the Ginzburg-
Landau-Devonshire theory. The proposed condition can serve

as a guide for DW engineering in perovskites, and predict the
low-energy OT DWs and consequently polarization DWs in
the hybrid improper ferroelectrics, such as some Ruddlesden-
Popper phases [3,30].
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